
DialogueView: An Annotation Tool for Dialogue

Peter A. Heeman and Fan Yang and Susan E. Strayer

Computer Science and Engineering

OGI School of Science and Engineering

Oregon Health & Science University

20000 NW Walker Rd., Beaverton OR, 97006

heeman@cse.ogi.edu yangf@cse.ogi.edu susan strayer@yahoo.com

Abstract

This paper describes DialogueView, a

tool for annotating dialogues with utter-

ance boundaries, speech repairs, speech

act tags, and discourse segments. The

tool provides several views of the data,

including a word view that is time-

aligned with the audio signal, and an ut-

terance view that shows the dialogue as

if it were a script for a play. The ut-

terance view abstracts away from lower

level details that are coded in the word

view. This allows the annotator to have

a simpler view of the dialogue when cod-

ing speech act tags and discourse struc-

ture, but still have access to the details

when needed.

1 Introduction

There is a growing interest in annotating human-

human dialogue. Annotated dialogues are useful

for formulating and verifying theories of dialogue

and for building statistical models. In addition to

orthographic word transcription, one might want

the following dialogue annotations.

� Annotation of the speech repairs. Speech re-

pairs are a type of disuency where speakers

go back and change or repeat something they

just said.

� Segmentation of the speech of each speaker

into utterance units, with a single ordering of

the utterances. We refer to this as linearizing

the dialogue (Heeman and Allen, 1995a).

� Each utterance tagged with its speech act

function.

� The utterances grouped into hierarchical dis-

course segments.

There are tools that address subsets of the above

tasks. However, we feel that doing dialogue an-

notation is very diÆcult. Part of this diÆculty

is due to the interactions between the annotation

tasks. An error at a lower level can have a large

impact on the higher level annotations. For in-

stance, there can be ambiguity as to whether an

\okay" is part of a speech repair; this will im-

pact the segmentation of the speech into utter-

ance units and the speech act coding. Sometimes,

it is only by considering the higher level annota-

tions that one can make sense of what is going on

at the lower levels, especially when there is over-

lapping speech. Hence, a tool is needed that lets

users examine and code the dialogue at all lev-

els. The second reason why dialogue annotation

is diÆcult is because it is diÆcult to follow what

is occurring in the dialogue, especially for coding

discourse structure. A dialogue annotation tool

needs to help the user deal with this overload.

In this paper, we describe our dialogue anno-

tation tool, DialogueView. This tool displays the

dialogue at three di�erent levels of abstraction.

The word level shows the words time-aligned with

the audio signal. The utterance level shows the

dialogue as a sequence of utterance, as if it were a

script for a play. It abstracts away from the exact

timing of the words and even skips words that do

not impact the progression of the dialogue. The

block level shows the dialogue as a hierarchy of

discourse segment purposes, and abstracts away

from the exact utterances that were said. Anno-

tations are done at the view that is most appropri-

ate for what is being annotated. The tool allows

the user to easily navigate between the three views

and automatically updates the higher level views

when changes are made in the lower level views.

Because the higher levels abstract away lower level

details, it is easier for the user to understand what

is happening in the dialogue.1 Yet, the user can

easily refer to the lower level views to see what

1This approach bears resemblance to the work of
J�onsson and Dahlb�ack (2000) in which they distill

human-human dialogues by removing those parts that
would not occur in human-computer dialogue. They
do this to create training data for their spoken dia-
logue systems.



actually occurred when necessary.

In the rest of this paper, we �rst discuss other

annotation tools. We then describe the three lev-

els of abstraction in our annotation tool. We then

discuss audio playback. Next, we discuss how the

tool can be customized for di�erent annotation

schemes. Finally, we discuss the implementation

of the tool.

2 Existing Tools

There are a number of tools that let users annotate

speech audio �les. These include Emu (Cassidy

and Harrington, 2001), SpeechView (Sutton et al.,

1998) and Waves+ (Ent, 1993). These tools often

allow multiple text annotation �les to be associ-

ated with the waveform and allow users an easy fa-

cility to capture time alignments. For instance, for

the ToBI annotation scheme (Pitrelli et al., 1994),

one can have the word alignment in one text �le,

intonation features in a second, break indices in a

third, and miscellaneous features in a fourth. The

audio annotation tools often have powerful signal

analysis packages for displaying such phenomena

as spectrograms and voicing. These tools, how-

ever, do not have any built-in facility to group

words into utterances nor group utterances into

hierarchical discourse segments.

Several tools allow users to annotate higher

level structure in dialogue. The annotation tool

DAT from the University of Rochester (Fergu-

son, 1998) allows users to annotate utterances or

groups of utterances with a set of hard-coded an-

notation tags for the DAMSL annotation scheme

(Allen and Core, 1997; Core and Allen, 1997).

The tool Nb from MIT (Flammia, 1995; Flammia,

1998) allows users to impose a hierarchical group-

ing on a sequence of utterances, and hence anno-

tate discourse structure. Both DAT and Nb take

as input a linearization of the speaker utterances.

Mistakes in this input cannot be �xed. Whether

there are errors or not, users cannot see the exact

timing interactions between the speakers' words or

the length of pauses. This simpli�cation can make

it diÆcult for the annotator to truly understand

what is happening in the dialogue, especially for

overlapping speech, where speakers �ght over the

turn or make back-channels.

The tools Transcriber (Barras et al., 2001) and

Mate (McKelvie et al., 2001) allow multiple views

of the data: a word view with words time-aligned

to the audio signal and an utterance view. How-

ever, Transcriber is geared to single channel data

and has a weak ability to handle overlapping

speech andMate only allows one view to be shown

at a time. The author of a competing tool has

remarked that \speed and stability of [Mate] are

both still problematic for real annotation. Also,

the highly generic approach increases the initial

e�ort to set up the tool since you basically have

to write your own tool using the Mate style-sheet

language" (Kipp, 2001). Hence, he developed a

new tool Anvil that he claims is a better trade-o�

among generality, functionality, and complexity.

This tool o�ers multi-modal annotation support,

but like Transcriber, does not allow detailed an-

notation of dialogue phenomena, such as overlap-

ping speech and abandoned speech, and has no

abstraction mechanism.

3 Word View

Our dialogue annotation tool, DialogueView,

gives the user three views of the data. The low-

est level view is called WordView and takes as

input the words said by each speaker and their

start and stop times and shows them time-aligned

with the audio signal. Figure 1 shows an ex-

cerpt from the Trains corpus (Heeman and Allen,

1995b) in WordView. This view is ideal for view-

ing the exact timing of speech, especially overlap-

ping speech. As will be discussed below, we use

it for segmenting the speech into utterances, and

annotating communicative status and speech re-

pairs.2 These annotations will allow us to build a

simpler representation of what is happening in the

speech for the utterance view, which is discussed

in the next section.

3.1 Utterance Segmentation

As can be seen in Figure 1, WordView shows the

words segmented into utterances, which for our

purpose is simply a grouping of consecutive words

by a single speaker, in which there is minimal

e�ect from the other speaker. Consider the ex-

change in Figure 1, where the upper speaker says

\and then take the remaining boxcar down to" fol-

lowed by the lower speaker saying \right, to du-",

followed by the upper speaker saying \Corning".

Although one could consider the upper speaker's

speech as one utterance, we preclude that due to

the interaction from the lower speaker. A full def-

inition of `utterance' is beyond the scope of this

paper, and is left to the users to specify in their

annotation scheme.

Utterance boundaries in WordView are only

shown by their start times. The end of the utter-

ance is either the start of the next utterance by the

2There currently is no support for changing the
word transcription. There are already a number of
tools that do an excellent job at this task. Hence,
adding this capability is a low priority for us.



Figure 1: Utterance Segmentation in WordView

same speaker or the end of the �le. With Word-

View, the user can easily move, insert or delete

utterance boundaries. The tool ensures that the

boundaries never fall in the middle of a word by

the speaker.

The start times of the utterances are used to

derive a single ordering of the utterances of the

two speakers. This linearization of the dialogue

captures how the speakers are sequentially adding

to the dialogue. The linearization is used by the

next view to give an abstraction away from the

exact timing of the speech.

3.2 Communicative Status

WordView allows features of the utterances to be

annotated. In practice, however, we only anno-

tate features related to its communicative status,

based on the DAMSL annotation scheme (Allen

and Core, 1997). Below, we give the utterance

tags that we assign in WordView.

Abandoned: The speaker abandoned what

they were saying and it had no impact on the rest

of the dialogue. This mainly happens where one

speaker loses the �ght over who speaks next. Fig-

ure 2 gives an example where the upper speaker

tries to take the turn by saying \takes," and than

abandons this e�ort.

Incomplete: The speaker did not make a com-

plete utterance, either prosodically, syntactically,

or semantically. Unlike the previous category, the

partial utterance did impact the dialogue behav-

ior. Figure 1 gives two examples. The �rst is

where the upper speaker says \and than take the

remaining boxcar down to", and the second is

where the lower speaker said \to du-," which was

than completed by the upper speaker.

Overlap: The speech in the utterance overlaps

with the speech from the prior utterance. For

instance, in Figure 1, the lower speaker utters

\okay" during the middle of an utterance, perhaps

to tell the upper speaker that they are understand-

ing everything so far. However, a simple lineariza-

tion would make it seem that the \okay" is an

acknowledgment of the entire utterance, which is

not the case. Hence, we tag the \okay" utterance

with the overlap tag. The next view, Utterance-

View, will take the overlap tag into account in

displaying the utterances, as will be discussed in

Section 4.3.

Not all overlapping speech needs to be anno-

tated with the overlap tag. In Figure 1, the sec-

ond instance of \Corning" overlaps slightly with

the �rst instance of \Corning". However, viewing

it sequentially does not alter the analysis of the

exchange.

3.3 Reordering Overlapping Speech

Consider the example in Figure 2. Before the ex-

cerpt shown, the lower speaker had just �nished

an utterance and then paused for over a second.

The upper speaker then acknowledged the utter-

ance with \okay", but this happened a fraction of

a second after the bottom speaker started speak-

ing again. A simple linearization of the dialogue

would have the \okay" following the wrong stretch

of speech|\and than th(at)- takes w- what three

hours." A solution to this would be to anno-



Figure 2: Utterance Ordering and Speech Repairs in WordView

tate the \okay" with the overlap tag. However,

this \Okay" is more similar to the overlapping in-

stances of \Corning" in Figure 1. The fact that

\Okay" overlaps with the start of the next utter-

ance is not critical to understanding what is oc-

curring in the dialogue, as long as we linearize

the \Okay" to occur before the other utterance.

WordView allows the user to change the lineariza-

tion by moving the start times of utterances. This

can be done provided that the speaker was silent

in the time interval preceding where the other per-

son started talking.

In summary, overlapping speech can be handled

in three ways. The utterance can be explicitly

tagged as overlapping; the overlap can be ignored

if it is not critical in understanding what is going

on in the dialogue; or the start time of the utter-

ance can be changed so that the overlap does not

need to be tagged.

3.4 Speech Repairs

WordView also allows users to annotate speech

repairs. A speech repair is where a user goes back

and repeats or changes something that was just

said (Heeman and Allen, 1999). Below we give an

example of a speech repair and show its principle

components: reparandum, interruption point, and

editing term.

Example 1

why don't we take
|{z}

reparandum
"
ip

um
|{z}

et

take two boxcars

The reparandum is the speech that is being re-

placed, the interruption point is the end of the

reparandum, and the editing term consists of

words such as \um", \uh", \okay", \let's see" that

help signal the repair.

To annotate a repair, the user highlights a se-

quence of words and then tags it as a reparandum

or an editing term of a repair. The user can also

specify the type of repair. Figure 2 shows how

speech repairs are displayed in WordView. The

words in the reparandum and editing term are un-

derlined and displayed in a special color.

3.5 Speech Repairs and Utterances

Some phenomena can be marked as either a speech

repair, or could be marked using the utterance

tags of incomplete or abandon. This is especially

true for fresh starts (Heeman and Allen, 1999),

where a speaker abandons the current utterance

and starts over. To avoid having multiple ways of

annotating the same phenomena, we impose the

following restrictions in our annotation scheme.

� There cannot be an utterance boundary in-

side of a reparandum, inside of an editing

term, at the interruption point, nor at the

end of the editing term. Hence, something

annotated as a reparandum cannot also be

annotated as an abandoned utterance.

� Abandoned or incomplete utterances cannot

be followed by an utterance by the same

speaker.

� All word fragments must either be the last

word of a reparandum or the last word of an

utterance that is marked as abandoned or in-

complete.



Figure 3: UtteranceView: Segmented Utterances in UtteranceView

� Abandoned or incomplete utterances can end

with an editing term, which would be marked

as the editing term of an abridged repair.

3.6 Summary

There are a number of reasons why we annotate

utterance boundaries, speech repairs, and commu-

nicative status in WordView. Annotating utter-

ance boundaries and overlapping speech requires

the user to take into account the exact timing of

the utterances, which is best done in this view.

Speech repairs also require �ne tuned listening to

the speech and have strong interactions with ut-

terance boundaries. Furthermore, all three types

of annotations can be used to build a simpler view

of what is happening in the dialogue, as will be ex-

plained in the next section.

4 Utterance View

The annotations from the word view are used to

build the next view, which we refer to as Utter-

anceView. The dialogue excerpts from Figures 1

and 2 are shown in the utterance view in Figures 3

and 4, respectively. The utterance view abstracts

away from the detailed timing information and in-

dividual words that were spoken. Instead, it fo-

cuses on the sequence of utterances between the

speakers. By removing details that were anno-

tated in the word view, we still preserve the im-

portant details that are needed to annotate speech

act types for the utterances and to annotate dis-

course segments. Of course, if the user wants to

see the exact timing of the words in the utter-

ances, they can examine the word view, as it is



Figure 4: UtteranceView: Reordered and Abandoned Utterances in UtteranceView

displayed alongside the utterance view. There are

also navigation buttons on each view that allow

the user to easily reposition the portion of the di-

alogue in the other view. Furthermore, changes

made in the word view are immediately propa-

gated into the utterance view, and hence the user

will immediately see the impact of their annota-

tions.

4.1 Utterance Ordering

Utterance ordering in the utterance view is deter-

mined by the start times of the utterances as spec-

i�ed in WordView. As was explained earlier, alter-

ing the start time of an utterance can be used to

simplify some cases of overlapping speech, where

the overlap is not critical to understanding the

role of the utterance in the dialogue. Figure 2

gave the word view of such an example. Rather

than code it as an overlap, we moved the start

time of the \okay" utterance so that it precedes

the overlapping speech by the other speaker. Fig-

ure 4 shows how this looks in the utterance view.

Here, the annotator would view the \okay" as an

acknowledgment that occurred between the two

utterances of the lower speaker.

4.2 Speech Repairs

In the word view, the user annotates the reparan-

dum and editing term of speech repairs. If the

reparandum and editing term are removed, the

resulting utterance reects what the speaker in-

tended to say. Speech repairs do carry informa-

tion.

� Their occurrence can signal a lack of certainty

of the speaker.

� The reparandum of a repair can have an

anaphoric reference, as in \Peter was, well

he was �red."

However, removing the reparandum and editing

term of speech repairs from utterances in the ut-

terance view leads to a simpler representation of

what is occurring in the dialogue. Hence, in the

utterance view, we clean up the speech repairs, as

shown in Figures 2 and 4. Figure 2, which shows

the word view, contains the utterance \and then

th(at) that takes w- what three hours"; whereas

Figure 4, which shows the utterance view, con-

tains \and then that takes what three hours." Of

course, a user can always refer to the word view

when annotating in the utterance view if they

want to see the exact speech that was said. In

most cases, we feel that this will not be neces-

sary for annotating speech act tags and discourse

segments.

4.3 Communicative Status

The communicative status coded in the word view

is used in formatting the utterance view. Utter-

ances tagged as overlapping are indented and dis-

played with `+' on either side, as shown in Fig-

ure 3. Utterances tagged as abandoned are not



shown, as can be seen in Figure 4, in which the

abandoned utterance \takes" made by the upper

speaker is not included. Utterances tagged as in-

complete are shown with a trailing \..." as shown

in Figure 3.

4.4 Annotating Utterance Tags

In the utterance view, one can also annotate the

utterances with various tags. For our work, we

use a subset of the DAMSL tags corresponding

to forward and backward functions (Allen and

Core, 1997). Forward functions include state-

ment, request information, and suggestion. Back-

ward functions include answer, acknowledgment,

and agreement. Although these utterance tags

could be annotated in the word view, doing it in

the utterance view allows us to see more context,

which is needed to give the utterance the proper

tags. When necessary, the annotator can easily

refer to the word view to see the exact local con-

text.

4.5 Annotating Blocks of Utterances

In the utterance view, the user can also annotate

hierarchical groupings of utterances.3 We use the

utterance blocks to annotate discourse structure

(Grosz and Sidner, 1986). This is similar to what

Flammia's tool allows (Flammia, 1995). Rather

than showing it with indentation and color, we

draw boxes around segments. Figure 3 shows a

dialogue excerpt with three utterance blocks in-

side of a larger block. To create a segment, the

user highlights a sequence of utterances and then

presses the \make segment" button. The user can

change the boundaries of the blocks by simply

dragging either the top or bottom edge of the box.

Blocks can also be deleted. The tool ensures that

if two blocks have utterances in common then one

block is entirely contained in the other.

Tags can also be assigned to the blocks. We

have just started using the tool for discourse seg-

mentation, and so we are still re�ning these tags.

In Grosz and Sidner's theory of discourse struc-

ture (1986), the speaker who initiates the block

does so to accomplish a certain purpose. We have

a tag for annotating this purpose. We also have

tags to categorize the block as a greeting, spec-

ify goal, construct plan, summarize plan, verify

plan, give info, request info, or other (Strayer and

Heeman, 2001).

The utterance view also allows the user to open

or close a block. When a block is open (the de-

fault), all of its utterances and sub-blocks are dis-

3We do not allow segments to be interleaved. It is
unclear if such phenomena actually occur.

played. When it is closed, its utterances and sub-

blocks are replaced by the single line purpose.

Opening and closing blocks is useful as it allows

the user to control the level of detail that is shown.

Consider the third embedded block shown in Fig-

ure 3, in which the conversants take seven utter-

ances to jointly make a suggestion. After we have

analyzed it, we can close it and just see the pur-

pose. This will make it easier to determine the

segmentation of the blocks that contain it.

We are experimenting with a special type of

dialogue block. Consider the example from the

previous paragraph, in which the conversants

take seven utterances to jointly make a sugges-

tion. This is related to the shared turns of

Schi�rin (1987), the co-operative completions of

Linell (1998), and the grounding units of Traum

and Nakatani (1999). We are experimenting with

how to support the annotation of such phenom-

ena. We have added a tag to indicate whether the

utterances in the block are being used to build a

single contribution. For these single contributions,

we also supply a concise paraphrase of what was

said. We have found that this paraphrase can be

built from a sequential subset of the words in the

utterances of the block. For instance, the para-

phrase of our example block is \and then take the

remaining boxcar down to Corning."

5 Block View

We are experimenting with a third view of the

dialogue. This view, which we refer to as Block-

View, abstracts away from the individual utter-

ances, and shows the hierarchical structure of the

discourse segments. This gives a very concise view

of the dialogue. The block view is also convenient

for it provides an index to the whole dialogue.

This allows the user to quickly move around the

dialogue.

6 Audio Playback

Each view gives the user the ability to select a re-

gion of the dialogue and to play it. In the word

view, the user can play each speaker channel indi-

vidually or both combined.4 This ability is espe-

cially useful for overlapping speech, where the an-

notator would want to listen to what each speaker

said individually, as well as hear the timing be-

tween the speaker utterances.

Just as each view provides a visual abstraction

from the previous one, we also do the same with

audio playback. In the word view, which has

4In order to play each speaker individually, we re-
quire a separate audio channel for each speaker.



wordViewUtt => atmostoneof abandoned incomplete overlap

uttViewUtt => anyof forward backward comment

uttViewUtt.forward => oneof statement question suggestion other

uttViewUtt.backward => oneof agreement understanding answer other

uttViewUtt.comment => other

Figure 5: Sample Speci�cation of Utterance Tags

Figure 6: Sample Utterance Annotation Panel

the speech repairs annotated, the user can play

back the speech cleanly of either speaker, where

the stretches of speech annotated as the reparan-

dum or editing term of a repair are skipped. We

have found this to be of great assistance in verify-

ing if something should be annotated as a repair

or not. It gives us an audio means to verify the

speech repair annotations. If we have annotated

the repair correctly, the edited audio signal should

sound fairly natural.

In formatting the utterance view, we take into

account whether utterances have been marked as

abandoned or overlapped. We provide a special

playback in the utterance view that takes this

into account. We build an audio �le in which we

skip over repairs, skip over abandoned speech, and

shorten large silences. If there is overlap that is

not marked as signi�cant, we linearize it by con-

catenating the utterances together. If the overlap

is marked as signi�cant, we keep the overlap. We

are �nding that this gives us an audio means to

ensure that our markings of abandonment, over-

lap and our linearization is correct.

We are also experimenting with even further

simplifying the audio output. For blocks that have

a paraphrase, and the block is closed, we play the

paraphrase by constructing it from the words said

in the block. For blocks that are closed that do

not have a paraphrase, we use the text-to-speech

engine in the CSLU toolkit (Colton et al., 1996;

Sutton et al., 1997) to say the purpose, as if there

was a narrator.

7 Customizations

Some aspects of the tool are built in, such as the

notion of utterances, speech repairs, and hierar-

chical grouping of utterances into blocks. How-

ever, the annotations of these phenomena and how

they are displayed can be customized through a

con�guration �le. This allows us to easily exper-

iment as we revise our annotation scheme; to use

domain speci�c tags; and to make the tool useful

for other researchers who might use di�erent tags.

Speech repair tags, utterance tags, and block

tags are speci�ed in the con�guration �le. Fig-

ure 5 gives a sample of how the annotation

tags for an utterance are speci�ed. The two top

level entries in the �gure are \wordViewUtt" and

\uttViewUtt", which specify the utterance anno-

tation tags in WordView and UtteranceView, re-

spectively. The decomposition can be of one of

three types.

atmostoneof: at most one of the attributes can



be speci�ed

oneof: exactly one of the attributes must be spec-

i�ed

anyof: there is no restriction on which attributes

can be speci�ed

The subcomponents can either be terminals as is

the case for the decomposition of \wordViewUtt",

or can be non-terminals, as is the case for each

of the three subcomponents of \uttViewUtt".

Hence, hierarchical tags are supported. Termi-

nals are assumed to be of binary type, except for

\other", which is assumed to be a string. The

con�guration �le determines how the annotation

panel is generated. For the annotation scheme

speci�ed in Figure 5, Figure 6 shows the annota-

tion panel that would be automatically generated

for the utterance view.

As we explained earlier, some of the utterance

tags a�ect how the word view and utterance view

are formatted. Rather than hard code this func-

tionality, it is speci�ed in the con�guration �le.

We are still experimenting with the best way to

code this functionality. Figure 7 gives an exam-

ple of how we code the utterance tag function-

ality. The �rst line indicates that the utterance

wordViewUtt.abandoned do wordView color red

wordViewUtt.abandoned uttView ignore

wordViewUtt.incomplete wordView color yellow

wordViewUtt.incomplete uttView trailsoff

wordViewUtt.overlap wordView color blue

wordViewUtt.overlap uttView overlap

Figure 7: Sample Utterance Display Speci�cation

tag of \abandoned" coded in WordView should

be displayed in red in WordView. The second line

indicates that it should not be displayed in Utter-

anceView.

8 Implementation

DialogueView is written in Tcl/Tk. We also use

utilities from the CSLU Speech Toolkit (Colton

et al., 1996; Sutton et al., 1997), including audio

and wave handling and speech synthesis. We have

rewritten the tool to use an object-oriented exten-

sion of Tcl called Tclpp, designed and developed

by Stefan Simnige. This is allowing us to better

manage the growing complexity of the tool as well

as reuse pieces of the software in our annotation

comparison tool (Yang et al., 2002). It should also

help in expanding the tool so that it can handle

any number of speakers.

9 Conclusion

In this paper, we described a dialogue annotation

tool that we are developing for segmenting dia-

logue into utterances, annotating speech repairs,

tagging speech acts, and segmenting dialogue into

hierarchical discourse segments. The tool presents

the dialogue at di�erent levels of abstraction al-

lowing the user to both see in detail what is go-

ing on and see the higher level structure that is

being built. The higher levels not only abstract

away from the exact timing, but also can skip over

words, whole utterances, and even simplify seg-

ments to a single line paraphrase. Along with the

visual presentation, the audio can also be played

at these di�erent levels of abstraction. We feel

that these capabilities should help annotators bet-

ter code dialogue.

This tool is still under active development. In

particular, we are currently re�ning how blocks

are displayed, improving the ability to customize

the tool for di�erent tagsets, and improving the

audio playback facilities. As we develop this tool,

we are also doing dialogue annotation, and re�n-

ing our scheme for annotating dialogue in order to

better capture the salient features of dialogue and

improve the inter-coder reliability.

10 Acknowledgments

The authors acknowledgment funding from the In-

tel Research Council.

References

James F. Allen and Mark G. Core. 1997. Damsl:
Dialog annotation markup in several layers.
Unpublished Manuscript.

Claude Barras, Edouard Geo�rois, Zhibiao Wu,
and Mark Liberman. 2001. Transcriber: devel-
opment and use of a tool for assisting speech
corpora production. Speech Communications,
33:5{22.

Steve Cassidy and Jonathan Harrington. 2001.
Multi-level annotation in the Emu speech
database management system. Speech Commu-
nications, 33:61{77.

Don Colton, Ron Cole, David G. Novick, and
Stephen Sutton. 1996. A laboratory course
for designing and testing spoken dialogue sys-
tems. In Proceedings of the International Con-
ference on Audio, Speech and Signal Processing
(ICASSP), pages 1129{1132.

Mark G. Core and James F. Allen. 1997. Coding
dialogs with the DAMSL annotation scheme.



In Working notes of the AAAI Fall Symposium
on Communicative Action in Humans and Ma-
chines.

Entropic Research Laboratory, Inc., 1993.
WAVES+ Reference Manual. Version 5.0.

George Ferguson. 1998. DAT: Dialogue annota-
tion tool. Available from www.cs.rochester.edu
in the subdirectory research/speech/damsl.

Giovanni Flammia. 1995. N.b.: A graphical user
interface for annotating spoken dialogue. In
AAAI Spring Symposium on Empirical Meth-
ods in Discourse Interpretation and Generation,
pages pages 40{46, Stanford, CA.

Giovanni Flammia. 1998. Discourse segmenta-
tion of spoken dialogue: an empirical approach.
Doctoral dissertation, Department of Electrical
and Computer Science, Massachusetts Institute
of Technology.

Barbara J. Grosz and Candace L. Sidner. 1986.
Attention, intentions, and the structure of dis-
course. Computational Linguistics, 12(3):175{
204.

Peter A. Heeman and James Allen. 1995a. Dia-
logue transcription tools. Trains Technical Note
94-1, Department of Computer Science, Univer-
sity of Rochester, March. Revised.

Peter A. Heeman and James F. Allen. 1995b. The
Trains spoken dialog corpus. CD-ROM, Lin-
guistics Data Consortium, April.

Peter A. Heeman and James F. Allen. 1999.
Speech repairs, intonational phrases and dis-
course markers: Modeling speakers' utterances
in spoken dialog. Computational Linguistics,
25(4):527{572.

Arne J�onsson and Nils Dahlb�ack. 2000. Distill-
ing dialogues | a method using natural di-
alogue corpora for dialogue systems develop-
ment. In Proceedings of the 6th Applied Natural
Language Processing Conference, pages 44{51,
Seattle.

Michael Kipp. 2001. Anvil: A generic annotation
tool for multimodal dialogue. In Proceedings of
the 7th European Conference on Speech Com-
munication and Technology (Eurospeech).

Per Linell. 1998. Approaching Dialogue: Talk,
Interaction and Contexts in Dialogical Perspec-
tives. John Benjamins Publishing.

David McKelvie, Amy Isard, Andreas Mengel,
Morten Baun M�uller, Michael Grosse, and Mar-
ion Klein. 2001. The MATE workbench | an
annotation tool for XML coded speech corpora.
Speech Communications, 33:97{112.

John F. Pitrelli, Mary E. Beckman, and Ju-
lia Hirschberg. 1994. Evaluation of prosodic
transcription labeling reliability in the ToBI
framework. In Proceedings of the 3rd Interna-
tional Conference on Spoken Language Process-
ing (ICSLP-94), Yokohama, September.

Deborah Schi�rin. 1987. Discourse Markers.
Cambridge University Press, New York.

Susan E. Strayer and Peter A. Heeman. 2001.
Dialogue structure and mixed initiative. In
Second workshop of the Special Interest Group
on Dialogue, pages 153{161, Aalborg Denmark,
September.

Stephen Sutton, Ed Kaiser, Andrew Cronk, and
Ronald Cole. 1997. Bringing spoken language
systems to the classroom. In Proceedings of the
5th European Conference on Speech Commu-
nication and Technology (Eurospeech), Rhodes,
Greece.

S. Sutton, R. Cole, J. de Villiers, J. Schalkwyk,
P. Vermeulen, M. Macon, Y. Yan, E. Kaiser,
R. Rundle, K. Shobaki, P. Hosom, A. Kain,
J. Wouters, M. Massaro, and M. Cohen. 1998.
Universal speech tools: the cslu toolkit. In Pro-
ceedings of the 5th International Conference on
Spoken Language Processing (ICSLP-98), pages
3221{3224, Sydney Australia, November.

David R. Traum and Christine H. Nakatani. 1999.
A two-level approach to coding dialogue for dis-
course structure: Activities of the 1998 working
group on higher-level structures. In Proceed-
ings of the ACL'99 Workshop Towards Stan-
dards and Tools for Discourse Tagging, pages
101{108, June.

Fan Yang, Susan E. Strayer, and Peter A. Hee-
man. 2002. ACT: a graphical dialogue anno-
tation comparison tool. Submitted for publica-
tion.


